

Datasheet

Quantum12TM HGD 1.2GHZ System Amplifiers

OVERVIEW

The Quantum12 HGD (High Gain Dual) 1.2GHz System Amplifier is the latest solution to provide high-quality signal performance in CATV networks. Designed for both high gain dual and high gain balanced triple, these system amplifiers seamlessly integrate into your GainMaker SA Housings.

High-performance Gallium Nitride (GaN) gain stage technology: Utilizes GaN technology for superior amplification performance.

· Delivers unrivaled signal strength and quality.

Drop into GainMaker SA Housing: Designed to be compatible with existing GainMaker SA Housings.

• Saves time and resources by eliminating the need for housing replacement.

Accessible RF test points: The amplifier's design allows access to RF test points without the need to open the housing.

Enables easy and efficient signal testing.

Spring-loaded seizure assemblies: Mechanism allows for the ease of installation or removal of the amplifier RF module.

• Provides a user-friendly field experience.

Robust Power Supply: Power supply unit is strategically positioned in the housing lid.

Ensures efficient thermal to optimize the product's lifespan.

QAM pilot AGC: An optional feature with thermal backup

• Provides better control and eliminates disruptive RF output variation during pilot loss.

Surge-resistant circuitry: Designed to protect the active devices that can lead to network outages.

 Enhances the longevity and reliability of the amplifier by reducing the risk of damage from unexpected power fluctuations.

Additional Features: These include a 15A current capacity (steady state), 25A surge (2-hour) survivability, AGC with thermal backup, and reverse input pad and RF test point for each reverse input port.

Offers increased resilience and versatility in various network conditions.

GENERAL STATION PERFORMANCE	UNITS	FORWARD	REVERSE	NOTES
Pass band	MHz	54-1218	5-204	
Amplifier type	-	GaN	GaAs	
Frequency response	dB	± 0.5	± 0.5	
Auto slope and gain range	dB	± 5.8	-	
Return loss	dB	16	16	4
Maximum AC through current (continuous)	Amps	15	-	
Maximum AC through current (surge)	Amps	25	-	
Hum modulation at 15A (over specified frequency range)	dB	60 (54-1002 MHz) 55 (1002-1218 MHz)	55 (5-10 MHz) 60 (10-204 MHz)	
Test points (± 0.75 dB)	dB	-20	-20	

Forward Station Performance	Units	Auto/Thermal with 12 dB I/S EQ	Notes
Operational gain (minimum)	dB	48	2
Internal tilt (± 0.5 dB) @ 54 – 1218 MHz	dB	19.0	6
Noise Figure	dB	8.5	2
BER	dB	<1E-6	
CCN	dB	49	5
MER	dB	49	5

Unless indicated differently, our specifications are established based on a standard performance of 68°F (20°C). The measurements employed in determining these specifications adhere to the globally recognized SCTE/ANSI standards, when relevant, utilizing standard frequency assignments.

Reverse Station Performance	Units		Notes
Operational gain (minimum) @ 42 MHz		21.6	
@ 85 MHz	dB	23.8	3, 4
@ 204 MHz		27.2	
Noise figure	dB	12	3, 4
NPR at 50dB CNR at 42 MHz		22	
NPR at 50dB CNR at 85 MHz	dB	19	
NPR at 50dB CNR at 204 MHz		14.5	

Station Delay Characteristics (42/54 Split)						
Forward (Chrominance to Luminance Delay)		Reverse (Group Delay in 1.5 MHz bandwidth)				
Frequency (MHz)	Delay (ns)	Frequency (MHz)	Delay (ns)			
55.25 to 58.83	39	5.0 to 6.5	60			
61.25 to 64.83	15	6.5 to 8.0	22			
67.25 to 70.83	17	8.0 to 9.5	12			
77.25 to 80.83	10	37.5 to 39.0	20			
		39.0 to 40.5	32			
		40.5 to 42.0	50			

Station Delay Characteristics (85/102 Split)

Forward (Chrominance to Luminance Delay)		Reverse (Group Delay in 1.5 MHz bandwidth)				
Frequency (MHz)	Delay (ns)	Frequency (MHz)	Delay (ns)			
109.275 - 112.855	15	5.0 to 6.5	60			
115.275 - 118.855	10	6.5 to 8.0	22			
121.2625 - 124.8425	8	8.0 to 9.5	12			
127.2625 - 130.8425	5	80.5 - 82.0	10			
		82.0 - 83.5	17			
		83.5 - 85.0	21			

Station Delay Characteristics (204/258 Split)

Forward (Chrominance to Luminance Delay)		Reverse (Group Delay in 1.5 MHz bandwidth)				
Frequency (MHz)	Delay (ns)	Frequency (MHz)	Delay (ns)			
259.2625 - 262.8425	10	5.0 to 6.5	60			
265.2625 - 268.8425	8	6.5 to 8.0	22			
271.2625 - 274.8425	7	8.0 to 9.5	12			
277.2625 - 280.8425	5	199.5 -201.0	6			
		201.0-202.5	5			
		202.5-204.0	8			

Station Powering Data														
Quantum12	IDC							AC Vo	oltage					
System Amplifier	(Amps)		90	85	80	75	70	65	60	55	50	45	40	35
The surged	150	AC current	0.67	0.69	0.70	0.71	0.73	0.76	0.85	0.90	0.96	1.04	1.17	1.33
Thermal	1.53	Power (W)	41.5	41.4	41.2	41.1	41.0	40.9	40.8	40.7	40.5	40.6	40.8	40.8
100	1.50	AC current	0.70	0.72	0.73	0.75	0.76	0.79	0.89	0.95	1.01	1.10	1.22	1.39
AGC	1.59	Power (W)	43.3	43.3	43.0	42.9	42.7	42.6	42.6	42.5	42.6	42.5	42.5	42.7

The data provided here is derived from stations set up for bidirectional operation. The specified AC currents are measured using a common CATV type ferroresonant AC power supply (quasi-square wave) and the Quantum12 High Output System Amplifier power supply (2.5A, 24 VDC).

The DC supply incorporates a customizable 30V, 40V, or 50 VAC under-voltage lockout circuit with the default setting being 30V, 40V, or 50 VAC. You can adjust the under-voltage lockout by modifying the position of the lockout jumper.

Note:

- We specify the output tilt as "LINEAR" tilt (not "cable" tilt). These tilts were achieved using a 12 dB EQ in the interstage, while the remaining tilt comes from the input EQ and the input signal. Forward gain and noise figures were measured with 0 dB input EQ, 1 dB input pad, Thermal, and AGC module. AUX2 port gain is 47.5 dB. Down tilt, an effect of cable, is denoted by a (-). Up tilt, an effect of equalization, is denoted by a (+). The data reflects mixed loading of 79 analog channels (54 554MHz) and SC-QAMs (554- 1218MHz) with 6dB back-off. Distortion performance at reference output levels and tilt. Corrected with source performance backed out. All digital loading. 49dBmV QAM at 1218MHz, 18dB tilt (54 1218 MHz). 1
- 2
- 3.
- 4.
- 5
- 6.

Unless indicated differently, our specifications are established based on a standard performance of 68°F (20°C). The measurements employed in determining these specifications adhere to the globally recognized SCTE/ANSI standards, when relevant, utilizing standard frequency assignments.

Environmental	Value
Operating temperature range	-40 to 140°F (-40 to 60°C)

Mechanical	Value
Housing dimensions (L ${\rm x}{\rm H}{\rm x}{\rm D})$	17.3 in. x 7.2 in. x 7.8 in. (439.4 mm x 182.9 mm x 198.1 mm)
Weight Housing with power supply Module	12 lb, 5 oz (5.6 kg) 5 lb, 5 oz (2.4 kg)

© 2024 by Applied Optoelectronics Inc., Quantum Bandwidth. All rights reserved.

